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Introduction

Approximate exchange functional Exact exchange operator 

Local DFT: Hybrid DFT: 

Cost of Hybrid DFT 

Goal: Prepare QE for large-scale 
execution on the KNL architecture, with 
a particular focus on improving the 
implementation of hybrid exchange 
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Total walltime for an SCF 
calculation on 16 waters: 



NERSC Whitebox, Quad Cache Mode; 
Intel 17.0.042 Compiler: 

Threads 

Original OpenMP Threading



Increasing the amount of work 
performed in each OMP loop 
dramatically reduces overhead 
costs. 

NERSC Whitebox, Quad Cache Mode; 
Intel 17.0.042 Compiler: 

Threads 

Improved OpenMP Threading



Flat Mode 

With the original code, running KNL in Cache mode is approximately 
2x faster than Flat mode.  Using FASTMEM directives enables Flat 
mode to outperform Cache mode. 

KNL  NUMA Mode Performance



Using the improved OpenMP code is the fastest way to run on KNL, and is 
about 1.6x faster than the best Haswell walltimes.  OMP is significantly 
improved on both Haswell and KNL. 

KNL vs. Haswell



Strong scaling of QE on Ivy Bridge, using pure MPI mode: 

Strong Scaling of QE



FFT-1[ ψi(g) ] 

Calculate ck(g) 

v(g) = ck(g) ρij(g) FFT-1[ v(g) ] 

FFT[ ρij(r) ] 

FFT[ Hψi(r) ] 

Reduce 
Hψi(r) 

Local 
Potential 

Update ψ 

Broadcast ψ(g) SCF 
Loop 

(duplicated on 
each bgrp) Loop i 

(duplicated on 
each bgrp) 

Hψi(r) += v(r) ψj(r) 

Loop j 
(bgrp parallelized) 

ρij(r) = ψi(r) ψj(r) 

Loop k 

Overview of Existing Code



FFT-1[ ψi(g) ] 

v(g) = ck(g) ρij(g) FFT-1[ v(g) ] 

FFT[ ρij(r) ] 

Local 
Potential 

Update ψ 

Broadcast ψ(g) SCF 
Loop 

(duplicated on 
each bgrp) 

Hψi(r) += v(r) ψj(r) 

Loop j 
(bgrp parallelized) 

ρij(r) = ψi(r) ψj(r) 

Loop k 

FFT[ Hψi(r) ] 

Reduce 
Hψi(g) 

Re-use ck(g) 

Loop i 
(bgrp parallelized) 

Pair Parallelization



Strong scaling of the exact exchange part of the code on Ivy Bridge, with 1 
band group per node: 

Parallelization over band pairs both improves the strong scaling of the code 
and also improves the load balancing. 

Pair Parallelization Performance



FFT-1[ ψi(g) ] 

v(g) = ck(g) ρij(g) FFT-1[ v(g) ] 

FFT[ ρij(r) ] 

Local 
Potential 

Update ψ 

Broadcast ψ(g) SCF 
Loop 

(duplicated on 
each bgrp) 

Hψi(r) += v(r) ψj(r) 

Loop j 
(bgrp parallelized) 

ρij(r) = ψi(r) ψj(r) 

Loop k 

FFT[ Hψi(r) ] 

Reduce 
Hψi(g) 

Re-use ck(g) 

Loop i 
(bgrp parallelized) 

Code Overview



Fraction of total walltime spent in local regions of the code, using 1 band 
group per node on Haswell: 

Unintuitively, local regions of the code dominate the cost of the calculation 
when using large numbers of nodes.  This is because the local regions of the 
code a run in serial with respect to band groups. 

Cost of the Local Calculation



Independent Parallelization of the 
Local Code

Node 1 

Band 1 

Data structure of Ψ(g), in 
local code: 

Band 2 

Band 3 

Band 4 

Band 5 

Band 6 

g5 g2 g4 g6 g1 g3 

Node 1 

Band 1 

Band 2 

Band 3 

Band 4 

Band 5 

Band 6 

g1 g2 g3 g4 g5 g6 

Node 2 Node 3 

Data structure of Ψ(g), in 
exact exchange code: 

Node 2 

Node 3 

Enabling parallelization of the local regions of the code across band groups requires 
on-the-fly transformation of the data structures between local and exact exchange 
regions of the code. 



Full Calculation Exact Exchange Part 
Strong scaling on Ivy Bridge, with 1 band group per node: 

Improved Strong Scaling



Thank You
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